Open Access Open Access  Restricted Access Subscription Access

Symbiotic response of three tropical maize varieties to Eco-friendly Arbuscular mycorrhizal fungal inoculation in Marginal soil

Sayeda Sarah, Tanvir Burni, Muhammad Shuaib, Yahya Alzahrani, Hameed Alsamadany, Farooq Jan, Firasat Hussain, Ikram Muhammad, Abdur Rauf, Fida Hussain, Sehroon Khan, Sadia Nadir, Kashif Ali, Saraj Bahadur, Ikramullah Khan

Abstract


The effect of three Glomus species on growth parameters in term of shoot length, root length, dry weight proximate composition and quantitative evaluation of mycorrhizal dependency of four tropical maize (Zea mays) varieties i.e. Jalal, Iqbal, Azam and Sarhad white were evaluated. The Arbuscular mycorrhizal (AM) inoculated plants showed significantly better performance than the non-inoculated plants in terms of plant height, root length and dry weight. Proximate analysis showed enhancement in crude protein, fat, moisture and ash content in mycorrhizal plants except carbohydrate and crude fibers. Regarding mycorrhizal dependency (M.D), maximum value was noted in Azam (60.03%) variety while least was observed in Iqbal variety (9.37%). while root colonization ranged from 86-100% in studied maize varieties. This study clearly indicates the potential of using indigenous AM fungi (Glomus species) as bio fertilizer in maize crop in low fertility soils hence reduce chemical fertilizer input and proved to be environment friendly.


Keywords


AM, maize varieties, host growth responses, mycorrhizal dependency, proximate analysis, AMF spore density and percent root colonization.

Full Text:

PDF

References


Adewole, M.B., Ilesanmi, A.O., 2011. Effects of soil amendments on the nutritional quality of okra (Abelmoschus esculentus L.). J. Pl. Nutr. Soil Sci., 11(3), 45-55.

Alizadeh, O., Majidi, M., Nadian, H., Noormohamadi, G.H., Amerian, M.R., 2007. Evaluation effects of mycorrhiza inoculant in different levels of irrigation and nitrogen on morphological and physiological traits of corn. J. Agro., 1(4), 309-319.

Al-Raddad, A.M., 1995. Mass production of Glomus mosseae spores. Mycorrhiza, 5, 229-231.

AOAC, 2006. Official Method of Analysis. Association of Analytical Chemistry, Washington DC.

Bai, J.F., Lin, X.G., Yin, R., Zhang, H.Y., Wang, J.H., Chen, X.M., Luo, Y.M., 2008. The influence of Arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl. Soil Ecol., 38(2), 137-145.

Barakh, F.N., Heggo, A.M., 1998. Bradyrhizobia, vesicular arbuscular mycorrhiza and P-Fertilizers effect of soyabean growth, nutrient content and phosphate activity under calcareous soil. Ann. Agr. Sci. Cairo., 43(2), 261-475.

Barea, J.M., Palenzuela, J., Cornejo, P., Sánchez-Castro, I., Navarro-Fernández, C., Lopéz-García, A., Estrada, B., Azcón, R., Ferrol, N., Azcón-Aguilar, C., 2011. Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J. Arid Environ., 75(12), 1292-1301.

Berruti, A., Lumini, E., Balestrini, R., Bianciotto, V., 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol., 6, 1559. doi: 10.3389/fmicb.2015.01559

Colard, A., Caroline, A., Sanders, I.R., 2011. Genetic exchange in an Arbuscular mycorrhizal fungus results in increased rice growth and altered Mycorrhiza-specific gene transcription. Appl. Environ. Microbiol., 77(18), 6510-6515.

Cooper, K.M., Losel, D.M., 1978. Lipid physiology of vesicular Arbuscular mycorrhiza, I. compostion of lipids in roots of onion, clover and ryegrass infected with Glomus mosseae. New Phytol., 80, 143.

Gaur, A., Adholeya, A., 2002. Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol. Fertil. Soil., 35, 214-218.

Gryngler, M., Vancura, V., 1991. The effects of long continued P fertilizer of the soil on the capability of VAM fungi to colonize maize roots. Rost. Vyroba, 37(1), 69-73.

Hatrick, B., Wilson, G.W.T., Cox, T.S., 1993. Mycorrhizal dependency of modern wheat cultivars and ancestors, A synthesis. Can. J. Bot., 71(3), 512-518.

Iqbal, S.H., Nasim, Shahjahan, G., 1988. Vesicular arbuscular mycorrhizal fungi associated with a Bryophyte Marchantia palmate. Biol., 34, 275-278.

Johnson, N.C., Graham, J.H., Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism, parasitism and continuum. New Phytol., 135, 575-586.

Khalafallah, A.A., Abo-Ghalia, H.H., 2008. Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants to short term water stress, followed by recovery at different growth stages. J. Appl. Sci. Res., 4(5), 559-569.

Lester, D., 2009. Buying and applying mycorrhizal fungi. Max. Yield. USA., 126-131. http,//www.maximumyield.com/article_sh db.php?articleID=483).

Manoharan, P.T., Pandi, M., Shanmugaiah, V., Gomathinayagam, S., Balasubramanian, N., 2008. Effect of vesicular Arbuscular mycorrhizal fungus on the physiological and biochemical changes of five different tree seedlings grown under nursery conditions. Afr. J. Biotech., 7(19), 3431-3436.

Mehrvarz, S., Chaichi, M.R., 2008. Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). Am. Eurasian. J. Agr. Environ. Sci., 3(6), 855-860.

Memon, K.S., Rashid, A., Puno, H.K., 1992. Phosphorus deficiency diagnosis and P soil test calibration in Pakistan. Trop. Soil Bulletin, 92(2), 125-147.

Mengel, K., Kirkby, E.A., 2001. Principles of plant nutrition, 5th edn. Kluwer, Dordrecht. MINFAL. (2007). Agricultural statistics of Pakistan (2006-2007). Govt. of Pakistan. Ministry of Food, Agriculture and Livestock. Economics Wing, Islamabad.

Mustafa, A.A., Othman, R., Zainal-Abidin, M.A., Ganesan, V., 2010. Growth response of sweet corn (Zea mays) to Glomus mosseae inoculation over different plant ages . Asian J. Pl. Sci., 9(6), 337-343.

Naseem, G., Shaheen, M., Bajwa, R., Zahoor, R., 1996. Effect of age of host on the development of vesicular arbuscular mycorrhizae in peanut (Arachis hypogea L.). Pak. J. Phyto., 8(1), 28-36.

NFDC, 2001. Balanced fertilization through phosphate promotion. Project terminal report NFDC, Islamabad, Pakistan.

Omomowo, I.O., Ola, I.O., Akintokun, A.K., Bankole, M.O., Babalola, O.A., 2009. Direct and residual influence of inoculation with Glomus mosseae and Bradyrhizobium japonicum on proximate and nutrient element content of cowpea seeds. Am.-Eurasian J. Sustain. Agr., 3(3), 435-441.

Ortas, I., Akpinar, C., 2011. Response of maize genotypes to several mycorrhizal inoculums in terms of plant growth, nutrient uptake and spore production. J. Pl. Nutr., 34(7), 970-987.

Plenchette, C., Fortin, J.A., Furlan, V., 1983. Growth response of several plant species to mycorrhiza in a soil of moderate P fertility. In, Mycorrhizal dependency under field conditions. Plant Soil, 70, 199-209.

Roy-Bolduc, A., Hijri, M., 2011. The use of Mycorrhizae to enhance phosphorus uptake, a way out the phosphorus crisis. J. Biofertil. Biopestici., 2, 104.

Sawers, R.J.H., Yang, S.Y., Gutjahr, C., Paszkowski, U., 2008. The molecular components of nutrient exchange in Arbuscular mycorrhizal interactions. In, Siddiqui, Z.A., Akhtar, M.S., Futai, K., (Eds.). Mycorrhizae, sustainable agriculture and foresrty. Springer, Dordrecht, the Netherlands. 37-60.

Sharif, M., Ahmad, E., Sarir, M.S., Muhammad, D., Shafi, M., Bakht, J., 2011. Response of different crops to Arbuscular mycorrhiza fungal inoculation in phosphorus-deficient soil. Commun. Soil Sci. Pl. Anal., 42(19), 2299-2309.

Shrestha, G., Vaidya, G.S., Rajbhandari, B.P., 2009. Effects of Arbuscular mycorrhiza in the productivity of maize and fingermillet relay cropping system. Nepal. J. Sci. Tech., 10, 51-55.

Smith, S.E., Read, D.J., 1997. Mycorrhizal symbiosis. San Diego, CA, Academic Press.

Sylvia, D.M., Hammond, L.C., Bennett, J.M., Haas, J.H., Linda, S.B., 1993. Field response of maize to a VAM fungus and water management. Agron. J., 85, 193-198.

Smith, F.A., Jakobsen, I., Smith, S.E., 2000. Spatial differences in acquisition of soil phosphate between two Arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol., 147, 357-366. doi: 10.1046/j.1469- 8137.2000.00695.x

Tarafdar, J.C., Marschner, H., 1995. Dual inoculation with Aspergillus fumigates and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil, 173, 97-102.

Tariq, M., Iqbal, H., 2010. Maize in Pakistan - An overview. Kasetsart J. Nat. Sci., 44, 757-763.

Taylor, J.H., Waltenbaugh, A., Shields, M., 2008. Impact of vesicular Arbuscular mycorrhiza on root anatomy in Zea mays and Lycopersicon esculentum. Afr. J. Agr. Res., 3(1), 001-006.

Wu, Q.S., Xia, R., Zou, Y.N., 2006b. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Pl. Physiol., 163, 1101-1110.

Xavier, L.J.C., Germida, J.J., 1998. Response of spring wheat cultivars to Glomus clarum NT4 in P-deficient soil containing Arbuscular mycorrhizal fungi. Jordan. J. Sci., 78(3), 481-484.

Zhu, X.C., Song, F.B., Xu, H.W., 2010. Arbuscular mycorrhiza improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil, 331(1-2), 129-137.


Refbacks

  • There are currently no refbacks.