Gold nanoinsulin particles effect on glucose level of induced diabetic mice and body physiology

Bashir Ahmad, Zaheer Ud Din, Muhammad Nasir Khan Khattak, Syed Imam Shah, Mohamed Y. Zaky, Gehad R. Abdelbaset, Pengyu Su, Ata Ur Rehman, Faizur Rahman, Mohammed Alshwmi, Syed Rafiq Hussain, Manzoor Ahmad, Bakhtawar Khan, Akbar Husain, Sadeeq Ahmad, Tariq Mehmood


Diabetes mellitus is characterized by hyperglycemia is a leading cause of death in both developed and underdeveloped countries. Few therapies are in practice, but rapid and effective control is still lacking. In the current study, we aim to check the effect of Gold nanoinsulin on glucose level, blood complete picture (CP) and blood biochemistry in alloxan induced diabetic mice. Gold naninsulin (NI) were injected into diabetic mice and glucose levels were measured. At the end of the experiment the blood was collected from the heart and performed the blood CP and blood biochemistry. Our results show that after treatment with nanoinsulin subcutaneously, the blood glucose level was comparable to normal control with 15 minutes while regular insulin takes 45 minutes. In CP and blood biochemistry, NI only decrease hemoglobin significantly compared to all groups. Gold nanoinsulin proved a difference and rapid therapy for controlling hyperglycemia.


Ahn, T., Bae, C.-S., & Yun, C.-H. (2016). Selenium supplementation restores the decreased albumin level of peripheral blood mononuclear cells in streptozotocin-induced diabetic mice. The Journal of veterinary medical science, 78(4), 669-674. doi:10.1292/jvms.15-0611

Akcilar, R., Kocak, F. E., Simsek, H., Akcilar, A., Bayat, Z., Ece, E., & Kokdasgil, H. (2016). Antidiabetic and hypolipidemic effects of adropinin streoptozotocin-induced type 2 diabetic rats. Bratislavske lekarske listy, 117(2), 100-105. doi:10.4149/bll_2016_020

Chistiakov, D. A., & Voronova, N. V. (2009). Zn(2+)-transporter-8: a dual role in diabetes. Biofactors, 35(4), 356-363. doi:10.1002/biof.49

Cho, H.-J., Oh, J., Choo, M.-K., Ha, J.-I., Park, Y., & Maeng, H.-J. (2014). Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. International journal of biological macromolecules, 63, 15-20. doi:10.1016/j.ijbiomac.2013.10.026

Cichocka, E., Wietchy, A., Nabrdalik, K., & Gumprecht, J. (2016). Insulin therapy - new directions of research. Endokrynologia Polska, 67(3), 314-324. doi:10.5603/EP.2016.0044

Dai, L., Banta, G. T., Selck, H., & Forbes, V. E. (2015). Influence of copper oxide nanoparticle form and shape on toxicity and bioaccumulation in the deposit feeder, Capitella teleta. Mar Environ Res, 111, 99-106. doi:10.1016/j.marenvres.2015.06.010

Guo, X., & Wang, W. (2017). Challenges and recent advances in the subcutaneous delivery of insulin. Expert opinion on drug delivery, 14(6), 727-734. doi:10.1080/17425247.2016.1232247

Khafagy, E.-S., Morishita, M., Onuki, Y., & Takayama, K. (2007). Current challenges in non-invasive insulin delivery systems: a comparative review. Advanced drug delivery reviews, 59(15), 1521-1546.

Lee, K.-C., Chen, W.-J., & Chen, Y.-C. (2017). Using Dextran-encapsulated gold nanoparticles as insulin carriers to prolong insulin activity. Nanomedicine (London, England), 12(15), 1823-1834. doi:10.2217/nnm-2017-0019

Liu, L., Lv, H., Teng, Z., Wang, C., & Wang, G. (2015). Glucose Sensors Based on [email protected] Magnetic Nanomaterials and Their Application in Diabetes Management: A Review. Curr Pharm Des, 21(37), 5359-5368. doi:10.2174/1381612821666150917092528

Nanovic, L. (2005). Electrolytes and fluid management in hemodialysis and peritoneal dialysis. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition, 20(2), 192-201. doi:10.1177/0115426505020002192

Organization, W. H. (2013). Diabetes. Fact sheet no. 312, reviewed October 2013. In.

Roden, M. (2016). Diabetes mellitus: definition, classification and diagnosis. [Diabetes mellitus - Definition, Klassifikation und Diagnose]. Wiener klinische Wochenschrift, 128 Suppl 2, S37-S40. doi:10.1007/s00508-015-0931-3

Shilo, M., Berenstein, P., Dreifuss, T., Nash, Y., Goldsmith, G., Kazimirsky, G., . . . Popovtzer, R. (2015). Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation. Nanoscale, 7(48), 20489-20496. doi:10.1039/c5nr04881h

Simoni, R. D., Hill, R. L., & Vaughan, M. (2002). The discovery of insulin: the work of Frederick Banting and Charles Best. Journal of Biological Chemistry, 277(26), e15-e15.

Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Jr., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein journal of nanotechnology, 6, 1769-1780. doi:10.3762/bjnano.6.181

Wahid, F., Khan, T., Shehzad, A., Ui-Islam, M., & Kim, Y. Y. (2014). Interaction of nanomaterials with cells and their medical applications. Journal of nanoscience and nanotechnology, 14(1), 744-754. doi:10.1166/jnn.2014.9016

Yaturu, S. (2013). Insulin therapies: current and future trends at dawn. World journal of diabetes, 4(1), 1.

Zhang, X.-D., Wu, H.-Y., Wu, D., Wang, Y.-Y., Chang, J.-H., Zhai, Z.-B., . . . Fan, F.-Y. (2010). Toxicologic effects of gold nanoparticles in vivo by different administration routes. International journal of nanomedicine, 5, 771-781. doi:10.2147/IJN.S8428


  • There are currently no refbacks.